We study the relation between renormalization of the chemical potential due to multiphonon effects at the surface of Be(0001) and doping by solving the strong-coupling self-consistent equations of a two-dimensional(2D) electron-phonon interaction system.We present the quasiparticle dispersions and inverse lifetimes of a 2D electron system interacting with Einstein phonons under the different dopings(corresponding to chemical potentials).We find that the effect of electron-phonon interaction on electron structure is strongest at the half filling,but it has no effect on the chemical potential.However,the chemical potential shows distinct renormalization effects away from half filling due to the electron-phonon interaction.
This paper studies the normal state properties of itinerant electrons in a toy model, which is constructed according to the model for coexisting ferromagnetism and superconductivity proposed by Suhl [Suhl H 2001 Phys. Rev. Lett. 87 167007]. In this theory with ferromagnetic ordering based on localized spins, the exchange interaction J between conduction electrons and localized spin is taken as the pairing glue for s-wave superconductivity. It shows that this J term will first renormalize the normal state single conduction electron structures substantially. It finds dramatically enhanced or suppressed magnetization of itinerant electrons for positive or negative J. Singlet Cooper pairing can be ruled out due to strong spin polarisation in the J 〉 0 case while a narrow window for s-wave superconductivity is opened around some ferromagnetic J.
The kink structure in the quasiparticle spectrum of electrons in graphene observed at 200 me V below the Fermi level by angle-resolved photoemission spectroscopy(ARPES) was claimed to be caused by a tight-binding electron–phonon(e–ph) coupling in the previous theoretical studies. However, we numerically find that the e–ph coupling effect in this approach is too weak to account for the ARPES data. The former agreement between this approach and the ARPES data is due to an enlargement of the coupling constant by almost four times.