In this paper,we firstly establish a combinatorial identity with a free parameter x,and then by means of derivative operation,several summation formulae concerning classical and generalized harmonic numbers,as well as binomial coefficients are derived.
设p>3为素数.对任何p-adic整数a,我们决定出p−1 X k=0 −k a a−1 k Hk,p−1 X k=0 −k a a−1 k Hk(2),p−1 X k=0 −k a a−1 k H(2)k 2k+1模p 2,其中Hk=P 0k 1/j2.特别地,我们证明了p−1 X k=0 −k a a−1 k Hk≡(−1)p 2(Bp−1(a)−Bp−1)(mod p),p−1 X k=0 −k a a−1 k Hk(2)≡−Ep−3(a)(mod p),(2a−1)p−1 X k=0 −k a a−1 k H(2)k 2k+1≡Bp−2(a)(mod p)其中p表示满足a≤r(mod p)的最小非负整数r,Bn(x)与En(x)分别表示次数为n的伯努利多项式与欧拉多项式.
调和数Hk=∑kj=11/j(k=0,1,2,3…)在数学中有着重要的作用.令p>5是一个素数.建立了如下的同余式:∑p-1k=1k5H3kH(2)k≡-112Bp-3-35263144000 mod p,∑p-1k=1k5H4k≡-145pBp-3-75013360000p+592250 mod p2,其中,B0,B1,B2,…为Bernoulli数,其定义如下:B0=1以及∑nk=0n+1kBk=0(n=1,2,3,…).