The effect of iron concentration on the microstructural and structural properties of ZnO for electrolysis and photodetector applications was investigated.The thin layers of un-doped and doped ZnO with different percentages of Fe(2,4,and 6 wt.%)were deposited by spin-coating on glass substrates.Sample characterization was done by X-ray diffraction(XRD),atomic force microscopy(AFM),scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDS),UV−Vis absorption spectra and X-ray photoelectron spectroscopy(XPS).Structural measurements by XRD showed that all the layers were composed of polycrystallines with a hexagonal Wurtzite structure.Two new peaks were also discovered after the doping process belonging to the Fe_(2)O_(4)(400)and(440)crystal phase.Morphological analysis showed that the surface roughness values of ZnO layers ranged between 8 and 45 nm.XPS studies confirmed the presence of Fe in 3+states in ZnO layers.An average transmittance of 90%was measured by UV−Vis in the wavelength range of 200−900 nm.The values of the energy gap(Eg)decreased with an increase in the concentration of Fe.AFM topography results confirmed that ZnO-based thin layers had a relatively uniform surface.The efficiency of these samples has been confirmed for their use in many electrical applications,including photodetectors and electrolysis of contaminated solutions.