抗癌药物组合的协同性筛选对于临床治疗具有重要意义,但随着药物组合数量的爆炸式增长,传统检测方法存在耗时长、成本高等问题,难以有效发现新的协同药物组合。针对上述问题,提出一种基于图注意力网络的抗癌药物组合协同性预测模型(multi-scale feature fusion model based on graph attention network for anticancer synergistic drug combination prediction,MFGSynergy)来辅助抗癌药物组合筛选。首先,该模型将药物简化分子线性输入规范(simplified molecular input line entry system,SMILES)编码为分子图及分子指纹数据,并对癌细胞系数据进行预处理;然后,通过图注意力网络(graph attention network,GAT)和多层感知机(multilayer perceptron,MLP)对药物数据及癌细胞系数据进行特征提取,并将提取到的多种药物特征和癌细胞系特征进行特征融合用于预测抗癌药物组合的协同性;最后,基于公开数据集将MFGSynergy与Deep DDS、DeepSynergy及6种机器学习方法进行对比实验,实验结果表明,MFGSynergy在五折交叉验证上的ROC曲线下的面积(receiver operating characteristic area under the curve,ROC AUC)、PR曲线下的面积(area under the precision-recall curve,AUPR)、准确性(accuracy,ACC)、精准度(precision,PREC)、真阳性率(true positive rate,TPR)和F1分别达到了0.94、0.94、0.86、0.87、0.86、0.86,均高于其他对比模型,这说明MFGSynergy的预测性能优于其他对比模型。此外,独立测试实验表明,对于未知的药物组合,MFGSynergy仍具有良好的预测性能,这证明模型具有良好的泛化性。