搜索到435篇“ 对称正定矩阵“的相关文章
对称正定矩阵时间序列自回归模型的统计推断
2025年
对称正定矩阵作为非欧随机对象数据中的一种典型数据,具有对称性和正定性的特定约束,且处于黎曼流形当中,使得所有基于欧式度量空间而建立的传统统计模型、方法和理论都不再适用。为此,本文将结合黎曼流形的几何结构,引入对称正定矩阵的黎曼均值、方差、协方差的定义,并针对对称正定矩阵时间序列构建自回归模型,同时给出所提模型的渐近理论和预测方法,最后通过模拟研究和实际数据分析来展示所提模型和方法的有效性和实用性。
胡盛铝黄涛
关键词:对称正定矩阵自回归模型黎曼流形
求解对称或厄密对称正定矩阵矩阵方法
本发明提出的一种求解对称或厄密对称正定矩阵矩阵方法,旨在提供一种运算精度损失小,能够提高Cholesky分解并行性,实现高速低延时全并行结构的求解方法。本发明通过下述技术方案予以实现:在求解中,采用定点数的移位操作,将...
张巍吴世奇陈俊
一种基于增强对称正定矩阵的脑电情绪识别方法
本发明公开了一种基于增强对称正定矩阵的脑电情绪识别方法。本发明首先采用小波包变换提取脑电信号的时频域信息;然后通过协方差方法将时频域信息嵌入到对称正定矩阵中得到增强的对称正定矩阵;最后将增强的对称正定矩阵在黎曼流形空间进...
高云园孙新宇范凌霄张卫张卷卷
基于分布式混合架构的对称正定矩阵分解算法研究与改进
在高性能计算领域中,现代科学计算应用中经常使用大规模矩阵分解进行线性系统的求解。Cholesky分解算法是其中一种最常见的矩阵分解算法,它主要用于地质领域、气候领域和电磁学领域的科学计算应用。近年来,多核共享内存系统中基...
焦瀚
关键词:MPIOPENMP分布式并行
一类求实对称正定矩阵逆的二次收敛算法
2021年
文章研究了实对称正定矩阵逆的计算问题.首先将逆矩阵的计算转化为矩阵方程的求解,进而基于系数矩阵的分裂,提出了一类迭代法以计算逆矩阵.理论分析显示,适当选取参数后该迭代法是收敛的,且具有二次收敛率.数值实验表明,新方法是可行的,而且在一定情况下也是较为有效的。
关晋瑞宋儒瑛
关键词:实对称正定矩阵迭代法
对称正定矩阵的分解
2019年
基于对称正定矩阵的特殊性质,利用谱分解、拉格朗日插值、矩阵的交换性三种不同的思想将对称正定矩阵的分解进行延拓,并将其运用于解决更多的数学问题。
朱佳政柏志林
关键词:谱分解拉格朗日插值
求解对称或厄密对称正定矩阵矩阵方法
本发明提出的一种求解对称或厄密对称正定矩阵矩阵方法,旨在提供一种运算精度损失小,能够提高Cholesky分解并行性,实现高速低延时全并行结构的求解方法。本发明通过下述技术方案予以实现:在求解中,采用定点数的移位操作,将...
张巍吴世奇陈俊
一种基于对称正定矩阵流形切空间子空间学习的描述子局部聚合向量方法
本发明涉及机器学习中描述子局部聚合向量相关问题,提出了一种基于对称正定矩阵流形切空间子空间学习的描述子局部聚合向量方法。已有的局部聚合向量方法大都是在欧式空间上,无法处理对称正定矩阵流形的非线性数据,为此,本方法提出了将...
马争鸣车航健陈李创凯刘洁
特殊五对角与七对角对称正定矩阵的一类反问题被引量:1
2018年
针对线性代数方程组Ax=b,利用矩阵分解的思想,构造一类特殊五对角与七对角对称正定阵的矩阵分解,获得这类矩阵反问题解存在的充要条件和通解表达式.最后,给出了具体算法与数值算例.
邓远北文亚云
关键词:线性代数方程组矩阵分解反问题
基于高斯混合模型的分量对称正定矩阵模型被引量:2
2018年
高斯混合模型(GMM)可以利用多个高斯分量捕捉图像集的变化信息,是一种良好的图像集描述方法.结合分量对称正定矩阵表示方法(CSPD),文中提出基于GMM的CSPD模型(G-CSPD).模型将图像集分成大小相同的子图像集,使用GMM描述每个子图像集,最终得到一个G-CSPD矩阵,该矩阵中元素描述子图像集之间相似性.在3个图像集上的实验表明,G-CSPD是具有鉴别性的图像集描述方法.
储莉吴小俊
关键词:黎曼流形

相关作者

李长军
作品数:19被引量:69H指数:5
供职机构:东北大学理学院
研究主题:迭代法 对称正定矩阵 鞍点问题 收敛性 预条件矩阵
邵新慧
作品数:45被引量:134H指数:7
供职机构:东北大学理学院
研究主题:迭代法 鞍点问题 迭代方法 收敛性 对称正定矩阵
刘仲云
作品数:23被引量:33H指数:3
供职机构:长沙理工大学数学与统计学院
研究主题:预处理 TOEPLITZ矩阵 对称正定 对称正定矩阵 线性方程组
孟国艳
作品数:21被引量:57H指数:4
供职机构:忻州师范学院
研究主题:离散数学 教学改革 条件数 线性方程组 对称正定矩阵
鲁雪晶
作品数:3被引量:1H指数:1
供职机构:长沙理工大学数学与计算科学学院
研究主题:对称正定矩阵 线性方程组 收敛性 迭代法 共轭梯度法